01-01-2025 03:14:11 PM

APPLIED MATHEMATICS Course Code: 312301

: Architecture Assistantship/ Automobile Engineering./ Artificial Intelligence/ Agricultural

Engineering/

Artificial Intelligence and Machine Learning/ Automation and Robotics/ Architecture/ Cloud

Computing and Big Data/

Civil Engineering/ Chemical Engineering/ Computer Technology/ Computer Engineering/ Civil & Rural Engineering/ Construction Technology/ Computer Science & Engineering/ Digital

Electronics/

Programme Name/s

Data Sciences/ Electrical Engineering/ Electronics & Tele-communication Engg./ Electrical and

Electronics Engineering/

Electrical Power System/ Electronics & Communication Engg./ Electronics Engineering/ Computer

Hardware & Maintenance/

 $Instrumentation \ \& \ Control/\ Industrial\ Electronics/\ Information\ Technology/\ Computer\ Science\ \&\ Control/\ Computer\ Science\ &\ Control/\ Cont$

Information Technology/

Instrumentation/ Interior Design & Decoration/ Interior Design/ Civil & Environmental Engineering/

Mechanical Engineering/ Mechatronics/ Medical Electronics/ Production Engineering/

Computer Science/ Electronics & Computer Engg.

: AA/ AE/ AI/ AL/ AN/ AO/ AT/ BD/ CE/ CH/ CM/ CO/ CR/ CS/ CW/ DE/ DS/ EE/

Programme Code EJ/ EK/ EP/ ET/ EX/ HA/ IC/ IE/ IF/ IH/ IS/ IX/ IZ/ LE/ ME/ MK/ MU/ PG/

SE/TE

Semester : Second

Course Title : APPLIED MATHEMATICS

Course Code : 312301

I. RATIONALE

An Applied Mathematics course, covering integration, definite integration, differential equations, numerical methods, and probability distribution, equips engineering students with essential problem-solving tools. It enables them to model and analyze complex systems, make informed decisions and address real-world engineering challenges effectively.

II. INDUSTRY / EMPLOYER EXPECTED OUTCOME

Engineers applying Mathematics should proficiently solve complex real-world problems, enhancing decision-making, design and innovation with precision and efficiency.

III. COURSE LEVEL LEARNING OUTCOMES (COS)

Students will be able to achieve & demonstrate the following COs on completion of course based learning

- CO1 Solve the broad-based engineering problems of integration using suitable methods.
- CO2 Use definite integration to solve given engineering related problems.
- CO3 Apply the concept of differential equation to find the solutions of given engineering problems.
- CO4 Employ numerical methods to solve programme specific problems.
- CO5 Use probability distributions to solve elementary engineering problems.

IV. TEACHING-LEARNING & ASSESSMENT SCHEME

]	Lear	ning	Schen	ne		-			As	sessr	nent	Sche	me				
Course Code	Course Title	Abbr	Course Category/	C Hr	onta s./W	ct eek	SLH	NLH	Credits	- up		The	ory			T	n LL L tical	&	Based of SL	To	otal
			,	CL	TL	LL				Duration	FA- TH	SA- TH	То	tal	FA-	PR	SA-	PR	SLA	IVI	larks
					-						Max	Max	Max	Min	Max	Min	Max	Min	Max M	in	
312301	APPLIED MATHEMATICS	ΔMS	ΔEC	3	1	_	_	4	2	3	30	70	100	40	_	_	-	-		1	100

Total IKS Hrs for Sem. : 2 Hrs

Abbreviations: CL- ClassRoom Learning, TL- Tutorial Learning, LL-Laboratory Learning, SLH-Self Learning Hours, NLH-Notional Learning Hours, FA - Formative Assessment, SA -Summative assessment, IKS - Indian Knowledge System, SLA - Self Learning Assessment

Legends: @ Internal Assessment, # External Assessment, *# On Line Examination , @\$ Internal Online Examination Note :

- 1. FA-TH represents average of two class tests of 30 marks each conducted during the semester.
- 2. If candidate is not securing minimum passing marks in FA-PR of any course then the candidate shall be declared as "Detained" in that semester.
- 3. If candidate is not securing minimum passing marks in SLA of any course then the candidate shall be declared as fail and will have to repeat and resubmit SLA work.
- 4. Notional Learning hours for the semester are (CL+LL+TL+SL)hrs.* 15 Weeks
- 5. 1 credit is equivalent to 30 Notional hrs.
- 6. * Self learning hours shall not be reflected in the Time Table.

01-01-2025 03:14:11 PM

APPLIED MATHEMATICS Course Code: 312301

7. * Self learning includes micro project / assignment / other activities.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT

Sr.No	Theory Learning Outcomes (TLO's)aligned to CO's.	Learning content mapped with Theory Learning Outcomes (TLO's) and CO's.	Suggested Learning Pedagogies.	
1	TLO 1.1 Solve the given simple problem(s) based on rules of integration. TLO 1.2 Evaluate the given simple integral(s) using substitution method. TLO 1.3 Integrate given simple functions using the integration by parts. TLO 1.4 Solve the given simple integral by partial fractions.	Unit - I Indefinite Integration 1.1 Simple Integration: Rules of integration and integration of standard functions 1.2 Integration by substitution. 1.3 Integration by parts. 1.4 Integration by partial fractions (only linear non repeated factors at denominator of proper fraction).	Improved Lecture Demonstration Chalk-Board Presentations Video Demonstrations	
2	TLO 2.1 Solve given examples based on Definite Integration. TLO 2.2 Use properties of definite integration to solve given problems.	Unit - II Definite Integration 2.1 Definite Integration: Definition, rules of definite integration with simple examples. 2.2 Properties of definite integral (without proof) and simple examples.	Video Simulation Chalk-Board Improved Lecture Presentations	
3	TLO 3.1 Find the order and degree of given differential equations. TLO 3.2 Form simple differential equation for given elementary engineering problems. TLO 3.3 Solve given differential equations using the methods of Variable separable and Exact Differential Equation(Introduce the concept of partial differential equation). TLO 3.4 Solve given Linear Differential Equation.	Unit - III Differential Equation 3.1 Concept of Differential Equation. 3.2 Order, degree and formation of Differential equations 3.3 Methods of solving differential equations: Variable separable form, Exact Differential Equation, Linear Differential Equation.	Video Demonstrations Presentations Chalk-Board Improved Lecture Flipped Classroom	
4	TLO 4.1 Find roots of algebraic equations by using appropriate methods. TLO 4.2 Solve the system of equations in three unknowns by iterative methods. TLO 4.3 Solve problems using Bakhshali iterative method for finding approximate square root. (IKS)	Unit - IV Numerical Methods 4.1 Solution of algebraic equations: Bisection method, Regula falsi method and Newton –Raphson method. 4.2 Solution of simultaneous equations containing three Unknowns by iterative methods: Gauss Seidal and Jacobi's method. 4.3 Bakhshali iterative method for finding approximate square root. (IKS)	Video SCILAB Spreadsheet Chalk-Board Flipped Classroom Presentations	
5	TLO 5.1 Solve given problems based on repeated trials using Binomial distribution. TLO 5.2 Solve given problems when number of trials are large and probability is very small. TLO 5.3 Utilize the concept of normal distribution to solve related engineering problems.	Unit - V Probability Distribution 5.1 Binomial distribution. 5.2 Poisson's distribution. 5.3 Normal distribution.	Video ORANGE Chalk-Board Improved Lecture Presentations	

VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL / TUTORIAL EXPERIENCES.

Practical / Tutorial / Laboratory Learning Outcome (LLO)	Sr No	Laboratory Experiment / Practical Titles / Tutorial Titles	Number of hrs.	Relevant COs
LLO 1.1 Solve simple problems of Integration by substitution	1	*Integration by substitution	1	CO1
LLO 2.1 Solve integration using by parts	2	*Integration by parts	1.	CO1
LLO 3.1 Solve integration by partial fractions(only linear non repeated factors at denominator of proper fraction).	3	Integration by partial fractions.	i	CO1
LLO 4.1 Solve examples on Definite Integral based on given methods.	4	Definite Integral based on given methods.	1	CO2
LLO 5.1 Solve problems on properties of definite integral.	5	*Properties of definite integral	1	CO2
LLO 6.1 Solve given problems for finding the area under the curve and volume of revolution.	6	* #Area under the curve and volume of revolution.(Only for Civil and Mechanical Engineering Group)	1	CO2
LLO 7.1 Solve examples on mean value and root mean square value.		* #Mean value and root mean square value.(Only for Computer, Electrical and Electronics Engineering Group)	1	CO2
LLO 8.1 Solve examples on order, degree and formation of differential equation.		Order, degree and formation of differential equation.	1	CO3

APPLIED MATHEMATICS
Ourse Code: 312301

Practical / Tutorial / Laboratory Learning **Laboratory Experiment / Practical Titles / Tutorial** Number Relevant Outcome (LLO) No **Titles** of hrs. COs LLO 9.1 Solve first order first degree 9 differential equation using variable separable Variable separable method. CO₃ 1 LLO 10.1 Solve first order first degree *Exact differential equation and linear differential differential equation using exact differential 10 CO3 equation. equation and linear differential equation. LLO 11.1 Solve engineering application *Applications of differential equations.(Take programme 11 CO3 specific problems) problems using differential equation. LLO 12.1 Solve problems on Bisection method 12 *Bisection method and Regula falsi method. 1 CO₄ and Regula falsi method. LLO 13.1 Solve problems on Newton-Raphson Newton- Raphson method. 13 1 CO₄ method. LLO 14.1 Solve problems on Jacobi's method 14 Jacobi's method and Gauss Seidal Method. 1 CO₄ and Gauss Seidal Method. LLO 15.1 Use Bakhshali iterative methods for *Bakhshali iterative methods for finding approximate 15 CO₄ finding approximate value of square root. (IKS) value of square root. (IKS) LLO 16.1 Solve engineering problems using 16 *Binomial Distribution 1 CO₅ Binomial distribution. LLO 17.1 Solve engineering problems using 17 *Poisson Distribution 1 CO₅ Poisson distribution. LLO 18.1 Solve engineering problems using 18 Normal Distribution 1 CO₅ Normal distribution. * # Laplace transform and properties of Laplace LLO 19.1 Solve problems on Laplace 19 transform.(Only for Electrical and Electronics CO₂ transform and properties of Laplace transform. Engineering Group) * # Inverse Laplace transform and properties of Inverse LLO 20.1 Solve problems on Inverse Laplace transform and properties of Inverse Laplace 20 Laplace transform.(Only for Electrical and CO₂ 1 transform. Electronics Engineering Group)

Note: Out of above suggestive LLOs -

- '*' Marked Practicals (LLOs) Are mandatory.
- Minimum 80% of above list of lab experiment are to be performed.
- Judicial mix of LLOs are to be performed to achieve desired outcomes.

VII. SUGGESTED MICRO PROJECT / ASSIGNMENT/ ACTIVITIES FOR SPECIFIC LEARNING / SKILLS DEVELOPMENT (SELF LEARNING)

Micro project

NA

Assignment

• NA

Note:

- Above is just a suggestive list of microprojects and assignments; faculty must prepare their own bank of microprojects, assignments, and activities in a similar way.
- The faculty must allocate judicial mix of tasks, considering the weaknesses and / strengths of the student in acquiring the desired skills.
- If a microproject is assigned, it is expected to be completed as a group activity.
- SLA marks shall be awarded as per the continuous assessment record.
- For courses with no SLA component the list of suggestive microprojects / assignments/ activities are optional, faculty may encourage students to perform these tasks for enhanced learning experiences.
- If the course does not have associated SLA component, above suggestive listings is applicable to Tutorials and maybe considered for FA-PR evaluations.

VIII. LABORATORY EQUIPMENT / INSTRUMENTS / TOOLS / SOFTWARE REQUIRED

2	Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
F	1	Open-source software like wolfram alpha, SageMaths, MATHS3D, GeoGebra, Graph, DPLOT, and Graphing	All
		Calculator (Graph Eq2.13), ORANGE can be used for Algebra, Calculus, Trigonometry and Statistics	

APPLIED MATHEMATICS

O1-01-2025 03:14:11 PM

Course Code: 312301

Sr.No	Equipment Name with Broad Specifications	Relevant LLO Number
	respectively.	

IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE (Specification Table)

Sr.No	Unit	Unit Title	Aligned COs	Learning Hours	R-Level	U-Level	A-Level	Total Marks
1	I	Indefinite Integration	CO1	15	2	6	12	20
2	II	Definite Integration	CO2	8	2	4	6	12
3	III	Differential Equation	CO3	8	2	4	6	12
4	IV	Numerical Methods	CO4	6	2	4	8	14
5	V	Probability Distribution	CO5	8	2	4	6	12
		Grand Total		45	10	22	38	70

X. ASSESSMENT METHODOLOGIES/TOOLS

Formative assessment (Assessment for Learning)

• Tests

Summative Assessment (Assessment of Learning)

• End Term Exam

XI. SUGGESTED COS - POS MATRIX FORM

Course	Tic.		Progr	amme Outco	mes (POs)			Oi	ogram Specific Itcome (PSOs)	c es*
Outcomes (COs)	PO-1 Basic and Discipline Specific Knowledge	PO-2 Problem Analysis	PO-3 Design/ Development of Solutions	PO-4 Engineering	PO-5 Engineering Practices for Society, Sustainability and Environment	PO-6 Project		PSO-	PSO- 2	PSO-
CO1	3	. 1	-		1	//	1	/		
CO2	3	1	- '		1	11,00	1	-//		
CO3	3	2	. 1	1	1	1	1			
CO4	2	3	2	2	1	1	1.			
CO5	2	2	1	1	2	1	2			

Legends:- High:03, Medium:02, Low:01, No Mapping: -

XII. SUGGESTED LEARNING MATERIALS / BOOKS

Sr.No	Author	Title	Publisher with ISBN Number		
1	Grewal B. S.	Higher Engineering Mathematics	Khanna publication New Delhi, 2013 ISBN: 8174091955		
2	Dutta. D	A text book of Engineering Mathematics	New age publication New Delhi, 2006 ISBN: 978-81-224-1689-3		
3	Kreysizg, Ervin	Advance Engineering Mathematics	Wiley publication New Delhi 2016 ISBN: 978-81-265-5423-2		
4	Das H.K.	Advance Engineering Mathematics	S Chand publication New Delhi 2008 ISBN: 9788121903455		
5	S. S. Sastry	Introductory Methods of Numerical Analysis	PHI Learning Private Limited, New Delhi. ISBN-978-81-203-4592-8		
6	C. S. Seshadri	Studies in the History of Indian Mathematics	Hindustan Book Agency (India) P 19 Green Park Extension New Delhi. ISBN 978-93-80250-06-9		
7	Marvin L. Bittinger David J.Ellenbogen Scott A. Surgent	Calculus and Its Applications	Addison-Wesley 10th Edition ISBN-13: 978-0-321-69433-1		
8	Gareth James, Daniela Witten,Trevor Hastie Robert andTibshirani	An Introduction to StatisticalLearning with Applications in R	Springer New York Heidelberg Dordrecht LondonISBN 978-1-4614-7137-0 ISBN 978-1-4614-7138-7 (eBook)		

XIII. LEARNING WEBSITES & PORTALS

Sr.No	Link / Portal	Description

^{*}PSOs are to be formulated at institute level

01-01-2025 03:14:11 PM

APPLIED MATHEMATICS Course Code: 312301

Sr.No	Link / Portal	Description		
1	http://nptel.ac.in/courses/106102064/1	Online Learning Initiatives by IITs and IISc		
2	https://www.khanacademy.org/math? gclid=CNqHuabCys4CFdOJaddHo Pig	Concept of Mathematics through video lectures and notes		
3	https://www.wolframalpha.com/	Solving mathematical problems, performing calculations, and visualizing mathematical concepts.		
4				
5	http://mathworld.wolfram.com/	Extensive math encyclopedia with detailed explanations of mathematical concepts		
6	https://www.mathsisfun.com/	Explanations and interactive lessons covering various math topics, from basic arithmetic to advanced		
7	http://tutorial.math.lamar.edu/	Comprehensive set of notes and tutorials covering a wide range of mathematics topics.		
8	https://www.purplemath.com/	Purplemath is a great resource for students seeking help with algebra and other foundational mathematics to improve learning.		
9	https://www.brilliant.org/	Interactive learning in Mathematics		
10	https://www.edx.org/	Offers a variety of courses		
11	https://www.coursera.org/	Coursera offers online courses in applied mathematics from universities and institutions around the globe.		
		The Massachusetts Institute of Technology (MIT) offers free access to course materials for a wide range of mathematical courses.		

Note:

• Teachers are requested to check the creative common license status/financial implications of the suggested online educational resources before use by the students

MSBTE Approval Dt. 01/10/2024

Semester - 2, K Scheme